Files
chibi-pc09/emu/z80pack-1.9/cpmsim/srcsim/iosim.c
Amber 783d32a495 copy all local files to repo
cp/m files, sprites, circuit design
2020-05-15 09:07:45 -04:00

869 lines
19 KiB
C

/*
* Z80SIM - a Z80-CPU simulator
*
* Copyright (C) 1987-2006 by Udo Munk
*
* This modul contains a complex I/O-simulation for running
* CP/M 2, CP/M 3, MP/M...
* Please note this this doesn't emulate any hardware which
* ever existed, we've got all virtual circuits in here!
*
* History:
* 28-SEP-87 Development on TARGON/35 with AT&T Unix System V.3
* 19-MAY-89 Additions for CP/M 3.0 und MP/M
* 23-DEC-90 Ported to COHERENT 3.0
* 10-JUN-92 Some optimization done
* 25-JUN-92 Flush output of stdout only at every OUT to port 0
* 25-JUN-92 Comments in english and ported to COHERENT 4.0
* 05-OCT-06 modified to compile on modern POSIX OS's
* 18-NOV-06 added a second harddisk
*/
/*
* This module contains the I/O handlers for a simulation
* of the hardware required for a CP/M system.
*
* Used I/O ports:
*
* 0 - console status
* 1 - console data
*
* 2 - printer status
* 3 - printer data
*
* 4 - auxilary status
* 5 - auxilary data
*
* 10 - FDC drive
* 11 - FDC track
* 12 - FDC sector
* 13 - FDC command
* 14 - FDC status
*
* 15 - DMA destination address low
* 16 - DMA destination address high
*
* 20 - MMU initialization
* 21 - MMU bank select
*
* 25 - clock command
* 26 - clock data
* 27 - 20ms timer causing INT, only usable in IM 1
*
*/
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include <time.h>
#include <sys/time.h>
#include "sim.h"
#include "simglb.h"
/*
* Structure to describe a emulated floppy disk drive:
* pointer to filename
* pointer to file descriptor
* number of tracks
* number of sectors
*/
struct dskdef {
char *fn;
int *fd;
unsigned int tracks;
unsigned int sectors;
};
static BYTE drive; /* current drive A..P (0..15) */
static BYTE track; /* current track (0..255) */
static BYTE sector; /* current sektor (0..255) */
static BYTE status; /* status of last I/O operation on FDC */
static BYTE dmadl; /* current DMA adresse destination low */
static BYTE dmadh; /* current DMA adresse destination high */
static BYTE clkcmd; /* clock command */
static BYTE timer; /* 20ms timer */
static int drivea; /* fd for file "drivea.cpm" */
static int driveb; /* fd for file "driveb.cpm" */
static int drivec; /* fd for file "drivec.cpm" */
static int drived; /* fd for file "drived.cpm" */
static int drivee; /* fd for file "drivee.cpm" */
static int drivef; /* fd for file "drivef.cpm" */
static int driveg; /* fd for file "driveg.cpm" */
static int driveh; /* fd for file "driveh.cpm" */
static int drivei; /* fd for file "drivei.cpm" */
static int drivej; /* fd for file "drivej.cpm" */
static int drivek; /* fd for file "drivek.cpm" */
static int drivel; /* fd for file "drivel.cpm" */
static int drivem; /* fd for file "drivem.cpm" */
static int driven; /* fd for file "driven.cpm" */
static int driveo; /* fd for file "driveo.cpm" */
static int drivep; /* fd for file "drivep.cpm" */
static int printer; /* fd for file "printer.cpm" */
static int auxin; /* fd for pipe "auxin" */
static int auxout; /* fd for pipe "auxout" */
static int aux_in_eof; /* status of pipe "auxin" (<>0 means EOF) */
static int pid_rec; /* PID of the receiving process for auxiliary */
static char last_char; /* buffer for 1 character (console status) */
static struct dskdef disks[16] = {
{ "disks/drivea.cpm", &drivea, 77, 26 },
{ "disks/driveb.cpm", &driveb, 77, 26 },
{ "disks/drivec.cpm", &drivec, 77, 26 },
{ "disks/drived.cpm", &drived, 77, 26 },
{ "disks/drivee.cpm", &drivee, -1, -1 },
{ "disks/drivef.cpm", &drivef, -1, -1 },
{ "disks/driveg.cpm", &driveg, -1, -1 },
{ "disks/driveh.cpm", &driveh, -1, -1 },
{ "disks/drivei.cpm", &drivei, 255, 128 },
{ "disks/drivej.cpm", &drivej, 255, 128 },
{ "disks/drivek.cpm", &drivek, -1, -1 },
{ "disks/drivel.cpm", &drivel, -1, -1 },
{ "disks/drivem.cpm", &drivem, -1, -1 },
{ "disks/driven.cpm", &driven, -1, -1 },
{ "disks/driveo.cpm", &driveo, -1, -1 },
{ "disks/drivep.cpm", &drivep, -1, -1 }
};
/*
* MMU:
* ===
*
* +--------+
* 16KB | common |
* +--------+
* +--------+ +--------+ .......... +--------+
* | | | | | |
* 48KB | | | | .......... | |
* | bank 0 | | bank 1 | | bank n |
* +--------+ +--------+ .......... +--------+
*/
#define MAXSEG 16 /* max. number of memory banks */
#define SEGSIZ 49152 /* size of one bank = 48KBytes */
static char *mmu[MAXSEG]; /* MMU with pointers to the banks */
static int selbnk; /* current bank */
static int maxbnk; /* number of initialized banks */
/*
* Forward declaration of the I/O handlers for all used ports
*/
static BYTE io_trap(void);
static BYTE cond_in(void), cond_out(BYTE), cons_in(void), cons_out(BYTE);
static BYTE prtd_in(void), prtd_out(BYTE), prts_in(void), prts_out(BYTE);
static BYTE auxd_in(void), auxd_out(BYTE), auxs_in(void), auxs_out(BYTE);
static BYTE fdcd_in(void), fdcd_out(BYTE);
static BYTE fdct_in(void), fdct_out(BYTE);
static BYTE fdcs_in(void), fdcs_out(BYTE);
static BYTE fdco_in(void), fdco_out(BYTE);
static BYTE fdcx_in(void), fdcx_out(BYTE);
static BYTE dmal_in(void), dmal_out(BYTE);
static BYTE dmah_in(void), dmah_out(BYTE);
static BYTE mmui_in(void), mmui_out(BYTE), mmus_in(void), mmus_out(BYTE);
static BYTE clkc_in(void), clkc_out(BYTE), clkd_in(void), clkd_out(BYTE);
static BYTE time_in(void), time_out(BYTE);
static void int_timer(int);
static int to_bcd(int), get_date(struct tm *);
/*
* This array contains two function pointer for every
* active port, one for input and one for output.
*/
static BYTE (*port[256][2]) () = {
{ cons_in, cons_out }, /* port 0 */
{ cond_in, cond_out }, /* port 1 */
{ prts_in, prts_out }, /* port 2 */
{ prtd_in, prtd_out }, /* port 3 */
{ auxs_in, auxs_out }, /* port 4 */
{ auxd_in, auxd_out }, /* port 5 */
{ io_trap, io_trap }, /* port 6 */
{ io_trap, io_trap }, /* port 7 */
{ io_trap, io_trap }, /* port 8 */
{ io_trap, io_trap }, /* port 9 */
{ fdcd_in, fdcd_out }, /* port 10 */
{ fdct_in, fdct_out }, /* port 11 */
{ fdcs_in, fdcs_out }, /* port 12 */
{ fdco_in, fdco_out }, /* port 13 */
{ fdcx_in, fdcx_out }, /* port 14 */
{ dmal_in, dmal_out }, /* port 15 */
{ dmah_in, dmah_out }, /* port 16 */
{ io_trap, io_trap }, /* port 17 */
{ io_trap, io_trap }, /* port 18 */
{ io_trap, io_trap }, /* port 19 */
{ mmui_in, mmui_out }, /* port 20 */
{ mmus_in, mmus_out }, /* port 21 */
{ io_trap, io_trap }, /* port 22 */
{ io_trap, io_trap }, /* port 23 */
{ io_trap, io_trap }, /* port 24 */
{ clkc_in, clkc_out }, /* port 25 */
{ clkd_in, clkd_out }, /* port 26 */
{ time_in, time_out } /* port 27 */
};
/*
* This function initializes the I/O handlers:
* 1. Initialize all unused ports with the I/O trap handler.
* 2. Initialize the MMU with NULL pointers.
* 3. Open the files which emulates the disk drives. The file
* for drive A must be opened, or CP/M can't be booted.
* Errors for opening one of the other 15 drives results
* in a NULL pointer for fd in the dskdef structure,
* so that this drive can't be used.
* 4. Create and open the file "printer.cpm" for emulation
* of a printer.
* 5. Fork the process for receiving from the serial port.
* 6. Open the named pipes "auxin" and "auxout" for simulation
* of a serial port.
*/
void init_io(void)
{
register int i;
for (i = 28; i <= 255; i++) {
port[i][0] = io_trap;
port[i][1] = io_trap;
}
for (i = 0; i < MAXSEG; i++)
mmu[i] = NULL;
if ((*disks[0].fd = open(disks[0].fn, O_RDWR)) == -1) {
perror("file disks/drivea.cpm");
exit(1);
}
for (i = 1; i <= 15; i++)
if ((*disks[i].fd = open(disks[i].fn, O_RDWR)) == -1)
disks[i].fd = NULL;
if ((printer = creat("printer.cpm", 0644)) == -1) {
perror("file printer.cpm");
exit(1);
}
pid_rec = fork();
switch (pid_rec) {
case -1:
puts("can't fork");
exit(1);
case 0:
execlp("./receive", "receive", "auxiliary.cpm", (char *) NULL);
puts("can't exec receive process");
exit(1);
}
if ((auxin = open("auxin", O_RDONLY | O_NDELAY)) == -1) {
perror("pipe auxin");
exit(1);
}
if ((auxout = open("auxout", O_WRONLY)) == -1) {
perror("pipe auxout");
exit(1);
}
}
/*
* This function stops the I/O handlers:
*
* 1. The files emulating the disk drives are closed.
* 2. The file "printer.com" emulating a printer is closed.
* 3. The named pipes "auxin" and "auxout" are closed.
* 4. The receiving process for the serial port is stopped.
*/
void exit_io(void)
{
register int i;
for (i = 0; i <= 15; i++)
if (disks[i].fd != NULL)
close(*disks[i].fd);
close(printer);
close(auxin);
close(auxout);
kill(pid_rec, SIGHUP);
}
/*
* This function is called for every IN opcode from the
* CPU emulation. It calls the right handler for the
* port, from which input is wanted.
*/
BYTE io_in(BYTE adr)
{
return((*port[adr][0]) ());
}
/*
* This function is called for every OUT opcode from the
* CPU emulation. It calls the right handler for the port,
* to which output is wanted.
*/
BYTE io_out(BYTE adr, BYTE data)
{
(*port[adr][1]) (data);
return((BYTE) 0);
}
/*
* I/O trap handler
*/
static BYTE io_trap(void)
{
if (i_flag) {
cpu_error = IOTRAP;
cpu_state = STOPPED;
}
return((BYTE) 0);
}
/*
* I/O handler for read console status:
* 0xff : input available
* 0x00 : no input available
*/
static BYTE cons_in(void)
{
register int flags, readed;
if (last_char)
return((BYTE) 0xff);
if (cntl_c)
return((BYTE) 0xff);
if (cntl_bs)
return((BYTE) 0xff);
else {
flags = fcntl(0, F_GETFL, 0);
fcntl(0, F_SETFL, flags | O_NDELAY);
readed = read(0, &last_char, 1);
fcntl(0, F_SETFL, flags);
if (readed == 1)
return((BYTE) 0xff);
}
return((BYTE) 0);
}
/*
* I/O handler for write console status:
* no reaction
*/
static BYTE cons_out(BYTE data)
{
data = data;
return((BYTE) 0);
}
/*
* I/O handler for read console data:
* read one character from the terminal without echo
* and character transformations
*/
static BYTE cond_in(void)
{
char c;
aborted:
if (last_char) {
c = last_char;
last_char = '\0';
} else if (cntl_c) {
cntl_c--;
c = 0x03;
} else if (cntl_bs) {
cntl_bs--;
c = 0x1c;
} else if (read(0, &c, 1) != 1) {
goto aborted;
}
return((BYTE) c);
}
/*
* I/O handler for write console data:
* the output is written to the terminal
*/
static BYTE cond_out(BYTE data)
{
while ((write(fileno(stdout), (char *) &data, 1)) != 1)
;
fflush(stdout);
return((BYTE) 0);
}
/*
* I/O handler for read printer status:
* the printer is ready all the time
*/
static BYTE prts_in(void)
{
return((BYTE) 0xff);
}
/*
* I/O handler for write printer status:
* no reaction
*/
static BYTE prts_out(BYTE data)
{
data = data;
return((BYTE) 0);
}
/*
* I/O handler for read printer data:
* always read a 0 from the printer
*/
static BYTE prtd_in(void)
{
return((BYTE) 0);
}
/*
* I/O handler for write printer data:
* the output is written to file "printer.cpm"
*/
static BYTE prtd_out(BYTE data)
{
if (data != '\r')
while ((write(printer, (char *) &data, 1)) != 1)
;
return((BYTE) 0);
}
/*
* I/O handler for read aux status:
* return EOF status of the aux device
*/
static BYTE auxs_in(void)
{
return((BYTE) aux_in_eof);
}
/*
* I/O handler for write aux status:
* change EOF status of the aux device
*/
static BYTE auxs_out(BYTE data)
{
aux_in_eof = data;
return((BYTE) 0);
}
/*
* I/O handler for read aux data:
* read next byte from pipe "auxin"
*/
static BYTE auxd_in(void)
{
char c;
if (read(auxin, &c, 1) == 1)
return((BYTE) c);
else {
aux_in_eof = 0xff;
return((BYTE) 0x1a); /* CP/M EOF */
}
}
/*
* I/O handler for write aux data:
* write output to pipe "auxout"
*/
static BYTE auxd_out(BYTE data)
{
if (data != '\r')
write(auxout, (char *) &data, 1);
return((BYTE) 0);
}
/*
* I/O handler for read FDC drive:
* return the current drive
*/
static BYTE fdcd_in(void)
{
return((BYTE) drive);
}
/*
* I/O handler for write FDC drive:
* set the current drive
*/
static BYTE fdcd_out(BYTE data)
{
drive = data;
return((BYTE) 0);
}
/*
* I/O handler for read FDC track:
* return the current track
*/
static BYTE fdct_in(void)
{
return((BYTE) track);
}
/*
* I/O handler for write FDC track:
* set the current track
*/
static BYTE fdct_out(BYTE data)
{
track = data;
return((BYTE) 0);
}
/*
* I/O handler for read FDC sector
* return the current sector
*/
static BYTE fdcs_in(void)
{
return((BYTE) sector);
}
/*
* I/O handler for write FDC sector:
* set the current sector
*/
static BYTE fdcs_out(BYTE data)
{
sector = data;
return((BYTE) 0);
}
/*
* I/O handler for read FDC command:
* always returns 0
*/
static BYTE fdco_in(void)
{
return((BYTE) 0);
}
/*
* I/O handler for write FDC command:
* transfer one sector in the wanted direction,
* 0 = read, 1 = write
*
* The status byte of the FDC is set as follows:
* 0 - ok
* 1 - illegal drive
* 2 - illegal track
* 3 - illegal sector
* 4 - seek error
* 5 - read error
* 6 - write error
* 7 - illegal command to FDC
*/
static BYTE fdco_out(BYTE data)
{
register long pos;
if (disks[drive].fd == NULL) {
status = 1;
return((BYTE) 0);
}
if (track > disks[drive].tracks) {
status = 2;
return((BYTE) 0);
}
if (sector > disks[drive].sectors) {
status = 3;
return((BYTE) 0);
}
pos = (((long)track) * ((long)disks[drive].sectors) + sector - 1) << 7;
if (lseek(*disks[drive].fd, pos, 0) == -1L) {
status = 4;
return((BYTE) 0);
}
switch (data) {
case 0: /* read */
if (read(*disks[drive].fd, (char *) ram + (dmadh << 8) +
dmadl, 128) != 128)
status = 5;
else
status = 0;
break;
case 1: /* write */
if (write(*disks[drive].fd, (char *) ram + (dmadh << 8) +
dmadl, 128) != 128)
status = 6;
else
status = 0;
break;
default: /* illegal command */
status = 7;
break;
}
return((BYTE) 0);
}
/*
* I/O handler for read FDC status:
* returns status of last FDC operation,
* 0 = ok, else some error
*/
static BYTE fdcx_in(void)
{
return((BYTE) status);
}
/*
* I/O handler for write FDC status:
* no reaction
*/
static BYTE fdcx_out(BYTE data)
{
data = data;
return((BYTE) 0);
}
/*
* I/O handler for read lower byte of DMA address:
* return lower byte of current DMA address
*/
static BYTE dmal_in(void)
{
return((BYTE) dmadl);
}
/*
* I/O handler for write lower byte of DMA address:
* set lower byte of DMA address
*/
static BYTE dmal_out(BYTE data)
{
dmadl = data;
return((BYTE) 0);
}
/*
* I/O handler for read higher byte of DMA address:
* return higher byte of current DMA address
*/
static BYTE dmah_in(void)
{
return((BYTE) dmadh);
}
/*
* I/O handler for write higher byte of DMA address:
* set higher byte of the DMA address
*/
static BYTE dmah_out(BYTE data)
{
dmadh = data;
return((BYTE) 0);
}
/*
* I/O handler for read MMU initialization:
* return number of initialized MMU banks
*/
static BYTE mmui_in(void)
{
return((BYTE) maxbnk);
}
/*
* I/O handler for write MMU initialization:
* for the FIRST call the memory for the wanted number of banks
* is allocated and pointers to the memory is stored in the MMU array
*/
static BYTE mmui_out(BYTE data)
{
register int i;
if (mmu[0] != NULL)
return((BYTE) 0);
if (data > MAXSEG) {
printf("Try to init %d banks, available %d banks\n",
data, MAXSEG);
exit(1);
}
for (i = 0; i < data; i++) {
if ((mmu[i] = malloc(SEGSIZ)) == NULL) {
printf("can't allocate memory for bank %d\n", i+1);
exit(1);
}
}
maxbnk = data;
return((BYTE) 0);
}
/*
* I/O handler for read MMU bank select:
* return current selected MMU bank
*/
static BYTE mmus_in(void)
{
return((BYTE) selbnk);
}
/*
* I/O handler for write MMU bank select:
* if the current selected bank is not equal the wanted bank,
* the current bank is saved. Then the memory of the wanted
* bank is copied into the CPU address space and this bank is
* set to be the current one now.
*/
static BYTE mmus_out(BYTE data)
{
if (data > maxbnk) {
printf("Try to select unallocated bank %d\n", data);
exit(1);
}
if (data == selbnk)
return((BYTE) 0);
memcpy(mmu[selbnk], (char *) ram, SEGSIZ);
memcpy((char *) ram, mmu[data], SEGSIZ);
selbnk = data;
return((BYTE) 0);
}
/*
* I/O handler for read clock command:
* return last clock command
*/
static BYTE clkc_in(void)
{
return(clkcmd);
}
/*
* I/O handler for write clock command:
* set the wanted clock command
*/
static BYTE clkc_out(BYTE data)
{
clkcmd = data;
return((BYTE) 0);
}
/*
* I/O handler for read clock data:
* dependent from the last clock command the following
* informations are given from the system clock:
* 0 - seconds in BCD
* 1 - minutes in BCD
* 2 - hours in BCD
* 3 - low byte number of days since 1.1.1978
* 4 - high byte number of days since 1.1.1978
* for every other clock command a 0 is returned
*/
static BYTE clkd_in(void)
{
register struct tm *t;
register int val;
time_t Time;
time(&Time);
t = localtime(&Time);
switch(clkcmd) {
case 0: /* seconds in BCD */
val = to_bcd(t->tm_sec);
break;
case 1: /* minutes in BCD */
val = to_bcd(t->tm_min);
break;
case 2: /* hours in BCD */
val = to_bcd(t->tm_hour);
break;
case 3: /* low byte days */
val = get_date(t) & 255;
break;
case 4: /* high byte days */
val = get_date(t) >> 8;
break;
default:
val = 0;
break;
}
return((BYTE) val);
}
/*
* I/O handler for write clock data:
* under UNIX the system clock only can be set by the
* super user, so we do nothing here
*/
static BYTE clkd_out(BYTE data)
{
data = data;
return((BYTE) 0);
}
/*
* Convert an integer to BCD
*/
static int to_bcd(int val)
{
register int i = 0;
while (val >= 10) {
i += val / 10;
i <<= 4;
val %= 10;
}
i += val;
return (i);
}
/*
* Calculate number of days since 1.1.1978
* The Y2K bug here is intentional, CP/M 3 has a Y2K bug fix
*/
static int get_date(struct tm *t)
{
register int i;
register int val = 0;
for (i = 1978; i < 1900 + t->tm_year; i++) {
val += 365;
if (i % 4 == 0)
val++;
}
val += t->tm_yday + 1;
return(val);
}
/*
* I/O handler for write timer
*/
static BYTE time_out(BYTE data)
{
static struct itimerval tim;
static struct sigaction newact;
if (data == 1) {
timer = 1;
newact.sa_handler = int_timer;
sigaction(SIGALRM, &newact, NULL);
tim.it_value.tv_sec = 0;
tim.it_value.tv_usec = 20000;
tim.it_interval.tv_sec = 0;
tim.it_interval.tv_usec = 20000;
setitimer(ITIMER_REAL, &tim, NULL);
} else {
timer = 0;
newact.sa_handler = SIG_IGN;
sigaction(SIGALRM, &newact, NULL);
tim.it_value.tv_sec = 0;
tim.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &tim, NULL);
}
return((BYTE) 0);
}
/*
* I/O handler for read timer
*/
static BYTE time_in(void)
{
return(timer);
}
/*
* timer interrupt causes maskerable CPU interrupt
*/
static void int_timer(int sig)
{
int_type = INT_INT;
}